Getting Started with IoT
IoT Installation Guide Example

This guide documents how to install and deploy a development platform for IoT, we will use an example of facial analysis to implement and test. All artifacts for facial analysis are contained in the zip file that can be downloaded from www.amphoria.com
Click here [image: A black and yellow rectangle with white text

Description automatically generated] then download the facialanaysis.zip file by clicking here [image: A logo of a blue cube

Description automatically generated]. We will reference this file later in this document.

Environments that can be used for this IoT Starter Platform:
· Raspberry Pi 3 or 4
· Memory: 2GB minimum
· Disk: 32GB SD Card
· A Windows desktop or laptop, a Linux Desktop or laptop, or an Apple Mac desktop or laptop.
· Memory: 4GB minimum
· Disk: 32GB
· TCP/IP network with Internet access

The following is a list of the installation steps.

Node.js

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that runs on the V8 JavaScript engine and executes code outside of a web browser.

In your browser, go to www.nodejs.org and download the latest installation package for your platform, make sure you select the correct version for your platform. Note that for the Raspberry Pi we will choose ARM processor.

[image: Graphical user interface, table

Description automatically generated]

Follow the instructions for installation on your platform from the Node.js site. Once your installation is complete, check that it is properly installed as follows:

Open a command line window and do the following:

Type node -v and press return / enter.
Your results should look something like this:
[image: Graphical user interface, text

Description automatically generated]
The information returned will be the installed version, in this example it is version 14.17.6

Node-Red

Node-RED is a flow-based development tool for visual programming originally developed by IBM to connect hardware devices, APIs, and online services as part of the Internet of Things (IoT). Node-RED provides a web browser-based flow editor, which can be used to create JavaScript functions. Note that it is possible to develop functions in other languages besides the default JavaScript (e.g. Python and others).

In your browser, go to https://nodered.org/ click "Get Started".

There are options to install it locally on a device or in the cloud.

For this exercise we will install locally.
[image: Diagram

Description automatically generated]
Read and follow the instructions carefully. Pay close attention to the difference in commands between Windows, Mac, Linux, and Raspberry Pi platforms.

Now we will check Node-Red is properly installed as follows:

Open a command line window and do the following:

Type node-red and press return / enter.

This will start the node-red environment.

Your results should look something like this:
[image: Text

Description automatically generated]

Open a browser (Firefox, Safari, Chrome, Microsoft Edge)

Go to http://localhost:1880 this will open the Node-Red development palette.
Your results should look something like this:
[image: Graphical user interface, text, application

Description automatically generated]

MQTT Broker

Note: this step can be skipped to run our sample, it will be required later if you want your own MQTT Broker running locally.

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging transport that is ideal for connecting remote devices with a small code footprint and minimal network bandwidth. MQTT today is used in a wide variety of industries, such as automotive, manufacturing, telecommunications, oil and gas, etc.

MQTT is a lightweight publish-subscribe network protocol that transports messages between devices. The protocol runs over TCP/IP and can also be configured to run over WebSockets.

WebSocket is a stateful communication protocol that provides a persistent full-duplex channel between a web server and a web client (browser) by reusing the same connection that was opened at the beginning of the communication (during the opening handshake).

WebSocket works over a TCP connection and resides at layer 7 in the OSI model.

Any network protocol that provides orderly, lossless, and bidirectional connections can support MQTT.

The download can be found here https://mosquitto.org/download/

Download the appropriate version for your platform and follow the installation instructions.

Mosquitto MQTT Broker customization is required to support TCP/IP connectivity as well as WebSocket connectivity.
Locate the mosquitto.conf file in your installation. Edit this file with any available text or code editor.

Search for the “Listeners” section. In this section, add:
listener 1883
listener 9001
protocol websockets
allow_anonymous true
Search for the “Logging” section. In this section, add the following:
connection_messages true
log_timestamp true
We will need the above commands only to show the Mosquitto logs in the console. You may not want to touch them, but we will enable the logs for testing later.
To connect to the Mosquitto Broker using TCP/IP:
	Mosquitto-server-ip@:1883 example 192.168.254.39:1883

To connect to the Mosquitto Broker using WebSockets (from a html program for example):
	Mosquitto-server-ip@:9001 example 192.168.254.39:9001

MQTTX

MQTTX your all-in-one MQTT client toolbox,

Go to https://mqttx.app/ download and install for your platform.

This will provide you with a utility that can be used to test MQTT messaging and validate your MQTT Mosquitto Broker installation.

Grafana

Grafana is a cross-platform web application for open-source analysis and interactive visualization. Provides tables, graphs, and alerts for the web when connecting to supported data sources.

Go to https://grafana.com download and install for your platform.

This tool is not part of the facial recognition project, but you will use it later to develop your own Dashboards for IoT projects.

Face++

Go to https://www.faceplusplus.com

We will register to use the facial recognition service provided by Face++/

Please note that this service is free for low volume use.

Click "Sign Up"
[image: Graphical user interface, application

Description automatically generated]
Complete the form to set up a personal use account.
Enter the verification code you receive by text message or email, enter a password, confirm that you have read the terms and conditions, and accept the Services.

[image: A screenshot of a application

Description automatically generated]
Click "Get API Key"

[image: Graphical user interface, application

Description automatically generated]

A new key will be generated for you, as well as an API secret. Click "View" and copy the API key and secret key into a document (this is important). Do not lose this document. We will need to use them later to configure the execution node that will invoke the face++ Facial Recognition service.

Facial Analysis Example.

Locate the facialanalysis.zip file that you downloaded at the beginning of this document and move it to your desired location and unzip it.

 A folder called “Facial Analysis” will be created and two sub-folders will be created, one called “Artifacts” and the other “Pictures for Analysis”.

Open the “Artifacts” folder and edit file config.js using your editor. This file contains the defaults that will be used by our Facial Analysis example.

It should look something like this:[image: Text

Description automatically generated]

Note that line 1 is pointing the MQTT Broker to a publicly available MQTT Server on the Internet provided by hiveMQ.

Once you have completed the testing of the facial analysis example, you may proceed to install your own Mosquitto Broker and then you would modify line 1 to your host IP@ e.g. 192.168.254.39 then you can test again using your local Broker.

Change line 3 topic as follows:

topic = ‘phonenumber/TEST/PHOTO’; replace phonenumber with your personal phone number which will make the topic unique to you.

Example: topic=’18135551212/TEST/PHOTO’;

Save and close the file.

Using your text editor, edit the facepp.html file in the Artifacts folder.

Scroll down and find line 123
[image: Graphical user interface, text, application, chat or text message

Description automatically generated]

Change the following in line 123:

var mytopic = “phonenumber/TEST/PHOTO/RESPONSE/”;

by replacing phonenumber with your personal phone number which will make the topic unique to you (same number you used above)

 	Example: 	var mytopic = “18135551212/TEST/PHOTO/RESPONSE/”;

Do it again for line 287:
[image: Text

Description automatically generated]

Save and close the file.

Configuring Node-Red

Using the browser go to http://localhost:1880 to open the Node-Red development palette on your machine. Here's what you should see:
[image: Graphical user interface, text, table

Description automatically generated]

We need to add base64 node to the Node-Red palette which will be used by the flow that we will import.
Let's add node-red-node-base64 support to the Node-Red palette as follows:

Click on the Hamburger icon in the upper right corner

[image: A screenshot of a phone

Description automatically generated with medium confidence]

The following dialog box will open, click "Manage Palette"
[image: A screenshot of a computer

Description automatically generated with medium confidence]

Click on the "Install" tab
[image: Graphical user interface, application, email

Description automatically generated]

[image: Graphical user interface, application, email

Description automatically generated]

Type base64 over "Search modules", the screen will show options to install. Select node-red-node-base64 and click on the "Install" button This action will complete the installation of a new node called base64 to the Node-Red development palette.

Now we are going to install the FacialAnalysis flow in the Node-Red development palette.

Using your editor open the file named faceppFlow.txt in the Facial Analysis directory. [image: Text

Description automatically generated]
Select the entire contents of the file with Ctrl + A (on Mac Cmd + A)
and copy it to the clipboard with Ctrl + C (on Mac Cmd + C)

Now we will import the flow, click on the hamburger icon again in the upper right corner and the dialog box on the right will open.
[image: A screenshot of a phone

Description automatically generated with medium confidence]

[image: A screenshot of a computer

Description automatically generated with medium confidence]
Click Import

You will see the following dialog box, click on the pink area, and paste the contents of the clipboard with Ctrl + V (on Mac Cmd + V)

[image: Graphical user interface, application

Description automatically generated]
Here's what you'll see, click the red "Import" button[image: Graphical user interface, text

Description automatically generated]
Here's what you'll see, the flow will be placed in the window
Note: that all of the flow nodes will have a blue circle next to them, this means they need to be deployed.
[image: A picture containing diagram

Description automatically generated]

Click the "Deploy" button and the blue circles will disappear, this records the flow in the Node-Red palette, and makes it ready to execute.

Open your editor and edit the file named CurlCommand.txt in the Artifacts folder.

It will look something like this: [image:]
Open the document where you saved the apikey and secretkey issued to you by face++.

Replace apikeygoeshere with the face++ API key.

Replace apisecretgoeshere with the face++ Secret key.

Save the CurlCommand.txt file but do not close it yet, instead do a Ctrl + A (on Mac Cmd + A) in the editor window to select all the contents and Ctrl + C (on Mac Cmd + C)
to copy it to the clipboard.

in node-red double-click the "curl" node to open the configuration dialog [image: A screenshot of a computer

Description automatically generated]
Put the cursor in the "Command" field and press Ctrl + V (on Mac Cmd + (on Mac Cmd + V) to paste the content from the clipboard into the Command field (this is what we updated earlier using your editor)
[image: Graphical user interface, text, application

Description automatically generated]
Click the "Done" button.
[image: Graphical user interface, website

Description automatically generated]
Click the "Deploy" button

Double click to open the MQTT In node.
[image: A screenshot of a computer

Description automatically generated]

Update the topic and Name fields replacing phonenumber with your phone number.
[image: A screenshot of a computer

Description automatically generated]

Double click to open the MQTT Out node.
[image: A screenshot of a computer

Description automatically generated]

Update the topic and Name fields replacing phonenumber with your phone number.
[image: A screenshot of a computer

Description automatically generated]

Click Done.
[image: A screenshot of a computer

Description automatically generated]

Now we can check if it works...

Open the Artifacts folder on your file system (inside Facial Analysis folder).

Double-click facepp.html this will open the html application in your default browser.

It should look like this

[image: Graphical user interface, application, Word

Description automatically generated]

Make sure the Status at the bottom says "WebSocket Connected" this means that the WebSockets connection between the html program and the MQTT Broker is open and ready.
Click the "Take a Picture" button.
[image: Graphical user interface, application, Word

Description automatically generated]

Go to the "Pictures for Analysis" folder, and select an image for analysis, double-click it. Your results will look something like this:
[image: Graphical user interface, application

Description automatically generated]
If you want to test it with photos of yourself or your family, take a photo and place it in the “Pictures for Analysis” folder and then run the web program again and select the image you want to process. If the image is too large, the program will tell you, make it smaller and try again.

The html program face++.html is written using the bootstrap framework, which means that it will automatically resize for a smartphone or tablet.

If your phone/tablet are on the same network try the following:

1. Open your browser on your phone/tablet enter the IP Address and press enter
[image: A screenshot of a phone

Description automatically generated]
2. Click on Choose File, you will get an option to use the Photo Library, Take a Picture with the camera, or Choose a File.
[image: A screenshot of a phone

Description automatically generated]

If you have any problems, please contact one of us:

patrick@amphoria.com
peter@amphoria.com

1
Version 3.0
©Amphoria, LLC – 2019 - 2024
image3.png
Downloads

Latest LTS Version: 16.13.2 (includes npm 8.1.2)

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended For Most Users Latest Features
([| a
. o g
Windows Installer macOS Installer Source Code
nodev16.132:x86msi node16.132pkg nodev16 1321argz
Windows Installer (.msi) 32-bit 64-bit
Windows Binary (.zip) 32-bit 64-bit
macOS Installer (.pkg) 64-bit / ARM64
macOS Binary (.tar.gz) 64-bit ARM64
Linux Binaries (x64) 64-bit
Linux Binaries (ARM) ARMVT ARMv8
Source Code node-v16.13.2.tar.gz

Additional Platforms

Docker Image Official Node.js Docker Image
Linux on Power LE Systems 64-bit
Linux on System z 64-bit

AlX on Power Systems 64-bit

image4.png
patrickverdugo — -zsh — 80x24

Last login: Sat Jan 22 12:32:51 on console

[patri ckverdugogNCC1701 ~ % node -v)
v14.17.6

patrickverdugo@NCC1701 ~ %

image5.png
Get Started

Node-RED is built on Node.js, taking full advantage of its event-driven, non-blocking model. This
makes it ideal to run at the edge of the network on low-cost hardware such as the Raspberry Pi
as well as in the cloud.

On a device
Run locally In the cloud
X o Raspberry Pi
o Getting started « BeagleBone Black o IBM Cloud
o Docker e SenseTecnic FRED
o Interacting with Arduino X
 Amazon Web Services
 Android
 Microsoft Azure

image6.png
patrickverdugo — node-red TMPDIR=/var/folders/zv/6fs68hdd6sd4wc1wm94gjg1moO...
[patrickverdugoNCC1701 ~ % node -v
v14.17.6
[patrickverdugoNCC1701 ~ % node-red
22 Jan 15:01:57 - [info]

Welcome to Node-RED

22 Jan 15:01:57

[info] Node-RED version: v2.1.2
[info] Node.js version: v14.17.6
[info] Darwin 21.2.0 x64 LE
[info] Loading palette nodes

image7.png
< (¢} O D localhost:1880,

b
Q@

Flow 1 MUSIC Alexa Play Music || Alexa Speak SSML P+ ~ i info ICHEE

v common

~ Flows
inject > B9 Flow 1

E > B music

E3 Alexa Play Music

complete > B9 Alexa Speak
> B9 ssmL
e 5
> B9 Alexa Lists
status > °
> E9 Flow 1
link in
> B9 Flow2
link call > 5 Flows
> B9 Weather by Zip Code
link out
> 9 UiBuilder
comment
E9 Flow1 2
v function Flow "e4474545c46a367"
function

image8.png
Welcome to Face** User Console

+ Account Type:

® Personal Account

* Full Name:

Country or Distrct:

Please S

start

Company Account

image9.png
Welcome to Face ++ user console

EN
. /— o

Verify phone or email Get AP Key Start using Key

What can user console do?

Getand use APl Key Get API's usage summary, QPS, cost
View API documents and account information

Use Guild

Web APl Mobile SDK Facial Recognition Basics Pricing

image10.png
App APIKey API Secret Type Status Operation

ptverdugo's fir... TEWba70hwoxH_sWimwlJHGYRKTWAVUyY ~ ******** View Free Active

You can now use API Key to call APIs! For more information, please check API Docs.

API Key is used for authentication in API request. Please keep this somewhere safe and secure.

image11.png
host = 'broker.hivemq.com'; // hostname or IP address
port = 8000; // hivenq websocket port

topic = *phonenumber/TEST/PHOTO'; // topic to subscribe to
useTLS = false;

username = null;

password = null;

// username = “user";

// password = "password";

cleansession = true;

1
4

image12.png
/7
Vi
/7

mgtt.subscribe(topic, {qos:
$('#topic').val(topic);
var test = String(uuid) + "<brs";

var mytopic = "pRORENUMBER/PHOTO/RESPONSE/#"

mqtt.subscribe(mytopic, {qos: @});
console. Log("Subscribed to :" + mytopic);
/console. loa("uuid :" + uuid):

0});

image13.png
else {
$('#age’) .val("Analysing...");
message = new Paho.MQTT.Message (base64Data) ;
message.destinationName = “phonenumber/PHOTO/REQUEST/"
matt.send(message) ;
1/ setTimeout(func, 60000);

image14.png
£ Node-reD

noe =

4nar| Flow5 Weather Facial Recognition | P | 4 || =

complete

e

image15.png
= Node-RED X

1 In @ ®

nition

image16.png
£ Node-reD x

w noe =

Deploy ~

Projects.
View

~ common
Import
inject Export
debu
2 Search flows
complete

Configuration nodes
catch Flows
Subflows.

Manage palette

Qattinas

image17.png
User Settings
View Nodes Install
QJilter nodes
Keyboard
© node-red
Palette S ros
48 nodes
Git config

© node-red-contrib-alasql
S 201

> anodes

© node-red-contrib-alexa
s 007

> Bnodes

© node-red-contrib-alexa-home
8122

> 2nodes wpdatet0123

© node-red-contrib-collector
s 001

image18.png
User Settings
View Nodes Install
sort: a-z | recent [
Keyboard
Q search modules 3246
Palette

Git config

image19.png
faceppFlow.txt

[{"id":"c52cecc. 2ecf5" , "type":"tab", " label": "Flow 8","disabled":
\"api_secret=apisecretgoeshere\" -F \"image_file=emit.jpg\" -F \
str = topic[2];\nvar response = str.replace(\"REQUEST\", \"RESPONS
,"output: 406.6959991455078, "y’
:"delay", "timeout":"1", "timeoutUnits":"seconds", "rate":
5 "name”: ", "topic qos":"0", "retain"
obj. faces [0].attributes.emotion.anger;\nvar disgust = obj.faces[0]
node.warn(\"Anger : \"+ anger);\n//node.warn(\"Disgust : \"+ disgu
msg;", "outputs”:1," :0,"initialize":"","finalize":"", " libs":
UUID that is the last part of the topic so\nthat the flow can hand
complete\nbefore sending the picture to Facer+\n\n\n","x":160,"y":
", "broker":"broker. hivenq. con", "port":"1883" ,"clie

image20.png
£ noe-ReD

<« c @ © O localhost:1880/#flow/f7187909.b54418 -9 n @ ®
E Import nodes
v Clipboard Paste flow json or L select a file to import

Library

Examples

Importto | current flow | new flow

image21.png
Node-RED x

(<

c @

E Import nodes

afi

o e e e - i —

b e

Clipboard

Library

Examples

Import to

© | O localhost:1880/#flow/f7187909.b54418

9 n @ ®

Paste flow json or | & select a file to import

7V3/TETECT/\"} \N\NVar Ur(parT.

ap1_Secret=YoersnsAGSLII=

PCM_1dEA4gzQyTBPIV7E\" s \nvar

urlpart3=\"api_key=

40Mw3xKj 2INhRU1CEW_aXonTtH7znas\"; \nvar

urlpartd=\"inage_bases4&\"; \nvar url
=(urlparti+urlpart2+urlpart3+urlpartd) ;\n\nnsg.url =
url;\nreturn msg;\m\n\n/#\n// This is what works from a
Browser.\n//return msg.headers;\n//https:

//apius. faceplusplus. con/v2/detect ion/detect?\n//ur’

ttp

%3M%2F%2F faceplusplus . cOMe2Fstatici2F ing%2Fdemos2F1. jpg\n//&

api_secre:

OUR_API_SECRET&api_key=YOUR_API_KEY&

attribute=glass, pose, gender, age, race, smiling

\n¥/", "outputs"
{"id":"4ec927df . 4aa0f" , "type"
broker","z":"","broker":"192.168.10.126", "port'

,"noerr":0,"x":480,"y":380, "wires": [[11},

mqtt-

183", "client

id":"", "usetls": false, "compatmode": true, "keepalive":"15", "clea

nsession

rue, "willTopic":"","willQos":"@", "willRetain":"fals

e","willPayload":"", "birthTopic":"","birthQos":"0", "birthRetai
n":"false", "birthPayload":""}]

current flow

new flow

image22.png
Flow 1 Flow 8 + -

°
About This Flow

. . 7 mweronaps
‘phonenumber/PHOTO/REQUEST/# Split Payload and Topic _

® connected e
° phonenumber/PHOTO/RESPONSE

e Create Response @ connected
delay 1s. !

image23.png
1 i_key=paste your key here" -F "api_secret=paste your secret here" -F "image_file=@mit.jpg" -F "return_attributes=gender,age,smiling,emotio

image24.png
=<2, Node-RED Deploy ~ [} =
Q Flow 1 Flow 2 Flow 3 + - j¥ debug i | &) | % |ln| ~
v common Y current flow ¥ wal ~
inject

About This Flow
complete

)|
‘ catch phonenumber/PHOTO/REQUEST/# 5 Split Payload and Topic

g write file
@ connected

status phonenumber/PHOTO/RESPONSE

Create Response @ connected

link call

link out

comment

image25.png
< (€] O D Iocalhost:1880/#flow/b2bdccba5101dfod

Q filter nodes MUSIC Alexa Play Music Alexa Speak SSML J Editexec node
About This Flow
1 Properties ¢ 8=
Get Camera Scan >
® connected

Command | curl -X POST "https://api-us.faceplusplus.com/facepp/va/detect” -F "apl_key=wN5H_b_OwQ

+Append [] msg. payload

® Output ‘when the command is complete - exec mode v

© Timeout seconds

ide console [

% Name curl

image26.png
link in

link call

link out

comment

v function

function

delay

trigger

Flow 1

About This Flow

Get Camera Scan

® connected

Flow 2 Flow 8

Split Payload and Topic

Weather by ZIp Coc| | UlBullder

ENE=E -~ — E Yo

delay 15

Flow3

\mm

Flow 8

matt
® comected

~ Flows
> B9 music
> E9 Alexa Play Music
> E9 Alexa Speak
> B9 ssmL
> B9 Alexa Lists

E9 Flow 1

E9 Flow2

E Flows

> B9 Weather by Zip Code
> 9 UiBuilder

> B9 Flowa

EJ cun aa

Node “ecadcfc8a995c51e"

Type exec

show more

image27.png
Edit mqtt in node ¥ debug i &) ||l 6 ~

Delete Cancel m Yecurrentflow v | | @Wall ~

J # Properties & B
@ Server broker.hivemqg.com:1883 RN
Action Subscribe to single topic :
= Topic phonenumber/PHOTO/REQUEST/#
& QoS 0 A
| Flags " Do not receive messages published by this client

" Keep retain flag of original publish

® Retained message handling

<

<

@ Output auto-detect (string or buffer)

This option is depreciated. Please use the new auto-
detect mode.

¥ Name phonenumber/PHOTO/REQUEST/#

image28.png
Edit mqtt out node

Delete Cancel m

J 1+ Properties e

@ Server broker.hivemq.com:1883 RN

= Topic phonenumber/PHOTO/RESPONSE

& QoS 0 o D Retain false o

User Properties v

Response topic v

Content Type v

Expiry (secs) v

¥ Name Name

Tip: Leave topic, qos or retain blank if you want to set them via msg
properties.

¥¥ debug i@ |||l

v

Y current flow ~

Dal ~

image29.png
eoe @M -

\ysis%20Package/Facial%20Analysis/Artifacts/facepp.htmi

Facial Analysis

Take a picture

Status: WebSocket Connected,

¢

image30.png
eoe @M -

\ysis%20Package/Facial%20Analysis/Artifacts/facepp.htmi

Facial Analysis

Take a picture

o Age:35
Gender : Female
Smiling : 100
Anger :0
Disgust : 0
Fear :0,001
Happiness : 99.995
Neutral :0
Sadness :0
Surprise :0.003

Status: WebSocket Connected,

¢

image31.png
09:41 all ¥ .

Facial Recognition

Choose File ' no file selected

StatuS: WebSocket Connet

AA 192.168.254.54

image32.png
09:41 all ¥ =

Facial Recognition

no file selected

Photo Library

Take Photo

Choose File

AA 192.168.254.54 ¢

h m O

image1.png
Build A Facial Recognition Example

image2.png

